

PAYING ATTENTION TO THE LEADING INDICATORS OF TURNAROUND OUTCOMES

Pete Shirley Asset Performance Networks Senior Consultant Houston, TX

What Does the Data Say? Industry Continues to Struggle...

74 percent of all turnarounds failed to satisfy all performance goals¹

... and 40 percent of all turnarounds grossly exceeded one or more success criteria and can be classified as a "train wreck"²

¹Performance goals defined as +/-10% of budget, +/-10% of planned schedule, no trips after startup ²Schedule and/or budget targets missed by 30% or more

From our database of Medium and High Complexity TAs executed since mid-2009 Ask this question...

Would the engineer of that train have done something differently if he knew he was going to crash?

Presentation Format

Introduction

- Event results are often foreshadowed by conditions present before the event starts
- Predictors are quantifiable and measurable...

... if you see them.

Turnarounds: What Does the Data Say?

Medium, High, and Mega Complexity Turnarounds Are Unpredictable

The odds are not in your favor...

• If I know nothing about your event, I can predict you will fail by some measure and I'll be correct the majority of the time

All is not lost...

- The outcome of each turnaround can be modeled and predicted outcomes can be quantified before the event starts
- Key elements that are more likely to drive the outcome in a negative direction can be identified, addressed, and mitigated

Remember this question?

turnaround leaders Would the engineer of that train have done something differently if he knew he was going to crash?

- Overrun cost by 30%
 Run long by 20%
 Have 2 recordables
- - Etc.

Presentation Format

Events Can Be Modeled in a Predictive Fashion

Event Complexity Impacts Performance

- A turnaround's complexity is measured by three inherent properties:
 - Size as measured in labor-hours
 - Percentage of the total turnaround execution labor-hours that are considered capital work
 - Turnaround interval
- Using these three measures, AP-Networks categorizes the turnarounds in its database as Low, Medium, High, and Mega Complexity

Defining Complexity Levels

Key Characteristics

Example Complexity Level	Average Labor- Hours	% Average Capital Scope	Average Peak Labor
Low	43,563	8%	238
Medium	203,710	13%	901
High	693,960	23%	1,524
Mega	1,241,648	30%	2,518

Source: AP-Networks Turnaround Database

As Complexity Goes Up, Performance Goes Down

Labor performance deteriorates with increasing turnaround size

- Higher complexity events almost always...
 - > Stress the existing organization's ability to prepare and manage
 - > Require organizational alignment and discipline that just isn't there
 - Rely on complex systems to manage information and work
 - Require longer preparation windows and greater efforts from the entire site

Events Can Be Modeled in a Predictive Fashion

Profile the Risk Factors

- Build a Risk Profile
- Predicted outcomes are sensitive to several key factors:
 - > Peak labor force
 - > Amount of piping work
 - > First inspection on new equipment
 - > Etc.

Events Can Be Modeled in a Predictive Fashion

Readiness and the Turnaround Readiness Pyramid

 Readiness relative to industry best practices can be measured and quantified

Readiness Drives Turnaround Performance Industry Data Shows Strong and Consistent Correlation

Statistical Modeling Can Predict Event Outcomes

Presentation Format

Organizational Tipping Points

Key Questions Posed by the Analysis

- 1. Is this turnaround too large for the site?
- 2. Is this turnaround too large for this turnaround department?

What Does the Data Say?

Industry Continues to Struggle...

85 Mega

74 percent of all turnarounds failed to satisfy all performance goals¹

60 Mega

... and 49 percent of all turnarounds grossly exceeded one or more success criteria and can be classified as a "train wreck"²

¹Performance goals defined as +/-10% of budget, +/-10% of planned schedule, no trips after startup ²Schedule and/or budget targets missed by 30% or more

From our database of Medium and High Complexity TAs executed since mid-2009

Capability Index Primary Components

Capability Index Higher Score Reduces Overrun Risk

Source: AP-Networks Turnaround Database

Organizational Capability Takeaway

- The ability to successfully manage a Mega Turnaround is highly dependent on several key factors:
 - Leadership's role in either galvanizing or splintering the organization
 - Properly staffed organization with no shortages or turnover in key positions
 - > Aligned long-range plan
 - Well-developed plan that can be used to manage work and keep work force productive
 - > The ability of the site to manage the sheer scope of activities
 - Disciplined approach to turnaround preparations by the entire site
 - Disciplined scope control

Presentation Format

Turnarounds Become More Unpredictable as Capital Increases

Capital Project Hours

Source: AP-Networks Turnaround Database

27

Capital/TA Integration Can Be Problematic

- Repeatability:
 - > Turnarounds have practical (repeatable) experience doing their work
 - > Projects are typically "one-off" without repeatability
 - Project costs are probabilistic in nature, whereas turnaround costs are informed by historical data and outcomes
- Systemic and cultural issues impede teams from exchanging information
 - Schedule integration is difficult
 - Goals and contractual terms are often misaligned
 - Conflicting team reporting structures and decision authorities
 - Physical interfaces are not well understood
- Project quality problems that are not resolved prior to installation compound when they are found during execution

Capital Projects Evaluations

- There are several ways to evaluate a capital project:
 - Project Assessments
 - Risk Workshops
 - Monte Carlo Assessment
- There are two tools to quantify the status and predict the outcome:
 - Projects Integration Index How well are my project and turnaround teams integrated?
 - Project Readiness Index (PRI) How well-prepared is my project for execution?

Integration Index

- Measures the quality of organizational and planning integration between the capital project and turnaround organizations
- Measured on a scale of 0% to 100%
- Effectively pinpoints gaps between project and turnaround teams
- Indicator of Turnaround Performance outcomes

Integration Index

Drivers are organized into three areas to quantify the level of project and turnaround integration

Integration Index

Probability of Success is Low Without a Strong Integration Index

Project Readiness Index

PRI is measured and quantified across 21 key elements

Potential execution concerns and gaps from best practices are identified

Presentation Format

Competitiveness Benchmarks

How did industry perform under similar circumstances?

Addresses the questions...

- Is my schedule too aggressive or too conservative?
- Is my budget too aggressive or too conservative?

Schedule Duration Benchmark

Schedule is Conservative Relative to Industry

Based on units with similar characteristics, # of units, labor-hours, complexity, etc.

The schedule distribution is based on a statistical regression model that includes a number of independent variables and leading indicators. The independent variables and model coefficients are proprietary to AP-Networks and are not shared.

Cost Benchmark

Cost Estimate is Aggressive Compared to Industry

The cost distribution is based on a statistical regression model that includes a number of independent variables and leading indicators. The Benchmarks are not a validation of submitted labor-hours. The Benchmark is not a validation of the estimated/actual labor-hours.

Presentation Format

Where the "Rubber Hits the Road"

Linking Leading Indicators to Outcomes A Case Study

Risk Manager Profiles High Risk Areas

RISK MANAGER

- Largest turnaround at this site in the past 15 years
- More than 500 estimated field laborers ٠
 - More than 400,000 labor-hours
- Higher than typical amount of piping work
- **Event Characteristics** Critical long lead materials threaten achieving the current schedule ٠
- Equipment and site congestion issues are especially critical and problematic ٠ for the current scope

Site Capabilities

- All engineering packages will be issued at least 1 month prior to the turnaround start **Capital Projects Integration**
- Between 25% and 50% projects work

Schedule and Cost Predictions TRI was 2.1, Industry Average TRI was 2.7

Schedule and Cost Predictions TRI was 2.1, Industry Average TRI was 2.7

Optimally Prepared Turnaround
 Average Prepared Turnaround
 Turnaround with a TRI of 2.1

Actual Cost Slip was 33%

Lookback Workshop Key Contributors

Leading Indicator: Late and High Volume of Capital Projects

Impact to Execution:

- > Inaccurate Staff Levels
- Stressed Logistics
- Engineering Errors

- Incomplete Schedule
- Fabrication and Fit-Up Errors
- Late Materials

Lookback Workshop Key Contributors

Leading Indicator: *Poor Integration Between TA and Capital* Impact to Execution:

- Two Separate, Inaccurate Schedules
- Two Separate QA Systems

- Resource Conflicts
- Equipment Access Conflicts

Leading Indicator: *Poor Scope Control and Late Scope Growth* Impact to Execution:

- Late Scope Not Added to Schedule
- Look-Ahead Not Functional
- Contributed to Inaccurate Staff Levels
- Late Arriving Materials
- Pre-Work Slip into Execution Window

Lookback Workshop Key Contributors

Leading Indicator: Late Safety Policy Changes

Impact to Execution:

- > Operational Aspects Not Detailed
- Field Supervisors Distracted Resolving Functional Details During Execution
- Compounded Congestion and Schedule Problems

Conclusion

- The outcome of each turnaround can be modeled, and predicted outcomes can be quantified before the event starts
- Key elements that are more likely to drive the outcome in a negative direction can be identified, addressed, and mitigated
- Collecting the right information for both the turnaround and capital projects can help you:
 - > Pinpoint areas of opportunity
 - > Quantify likely overages
- Each event's unique overages can be minimized if the organization is capable and ready to take the necessary steps
- You have to know where to start!